Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
3.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166285, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1460712

ABSTRACT

During pregnancy, a series of physiological changes are determined at the molecular, cellular and macroscopic level that make the mother and fetus more susceptible to certain viral and bacterial infections, especially the infections in this and the companion review. Particular situations increase susceptibility to infection in neonates. The enhanced susceptibility to certain infections increases the risk of developing particular diseases that can progress to become morbidly severe. For example, during the current pandemic caused by the SARS-CoV-2 virus, epidemiological studies have established that pregnant women with COVID-19 disease are more likely to be hospitalized. However, the risk for intensive care unit admission and mechanical ventilation is not increased compared with nonpregnant women. Although much remains unknown with this particular infection, the elevated risk of progression during pregnancy towards more severe manifestations of COVID-19 disease is not associated with an increased risk of death. In addition, the epidemiological data available in neonates suggest that their risk of acquiring COVID-19 is low compared with infants (<12 months of age). However, they might be at higher risk for progression to severe COVID-19 disease compared with older children. The data on clinical presentation and disease severity among neonates are limited and based on case reports and small case series. It is well documented the importance of the Zika virus infection as the main cause of several congenital anomalies and birth defects such as microcephaly, and also adverse pregnancy outcomes. Mycoplasma infections also increase adverse pregnancy outcomes. This review will focus on the molecular, pathophysiological and biophysical characteristics of the mother/placental-fetal/neonatal interactions and the possible mechanisms of these pathogens (SARS-CoV-2, ZIKV, and Mycoplasmas) for promoting disease at this level.


Subject(s)
COVID-19/etiology , COVID-19/transmission , Mycoplasma Infections/etiology , Mycoplasma Infections/transmission , Pregnancy Complications, Infectious , Zika Virus Infection/etiology , Zika Virus Infection/transmission , Biomarkers , Breast Feeding/adverse effects , Disease Susceptibility , Female , Host-Pathogen Interactions/immunology , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Maternal-Fetal Exchange , Mycoplasma , Placenta/immunology , Placenta/metabolism , Placenta/microbiology , Placenta/virology , Pregnancy , SARS-CoV-2 , Zika Virus
4.
Placenta ; 115: 70-77, 2021 11.
Article in English | MEDLINE | ID: covidwho-1433733

ABSTRACT

Species differences are among the main reasons for the high failure rate of preclinical studies. A better awareness and understanding of these differences might help to improve the outcome of preclinical research. In reproduction, the placenta is the central organ regulating fetal exposure to a substance circulating in the maternal organism. Exact information about placental transfer can help to better estimate the toxic potential of a substance. From an evolutionary point of view, the chorioallantoic placenta is the organ with the highest anatomical diversity among species. Moreover, frequently used animal models in reproduction belong to rodents and lagomorphs, two groups that are characterized by the generation of an additional type of placenta, which is crucial for fetal development, but absent from humans: the inverted yolk sac placenta. Taken together, the translatability of placental transfer studies from laboratory animals to humans is challenging, which is supported by the fact that numerous species-dependent toxic effects are described in literature. Thus, reliable human-relevant data are frequently lacking and the toxic potential of chemicals and pharmaceuticals for humans can hardly be estimated, often resulting in recommendations that medical treatments or exposure to chemicals should be avoided for safety reasons. Although species differences of placental anatomy have been described frequently and the need for human-relevant research models has been emphasized, analyses of substances with species-dependent placental transfer have been performed only sporadically. Here, we present examples for species-specific placental transfer, including that of nanoparticles and pharmaceuticals, and discuss potential underlying mechanisms. With respect to the COVID 19-pandemic it might be of interest that some antiviral drugs are reported to feature species-specific placental transfer. Further, differences in placental structure and antibody transfer may affect placental transfer of ZIKA virus.


Subject(s)
Maternal-Fetal Exchange/physiology , Placenta/metabolism , Animals , Antiviral Agents/pharmacokinetics , Biological Transport/physiology , COVID-19/transmission , COVID-19/virology , Female , Humans , Infectious Disease Transmission, Vertical , Maternal-Fetal Exchange/drug effects , Placenta/drug effects , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/virology , SARS-CoV-2/metabolism , Species Specificity , Yolk Sac/metabolism , Yolk Sac/physiology , Zika Virus/metabolism , Zika Virus Infection/drug therapy , Zika Virus Infection/transmission , COVID-19 Drug Treatment
5.
Int J Environ Res Public Health ; 18(1)2021 01 02.
Article in English | MEDLINE | ID: covidwho-1389357

ABSTRACT

Infectious diseases have caused some of the most feared plagues and greatly harmed human health. However, despite the qualitative understanding that the occurrence and diffusion of infectious disease is related to the environment, the quantitative relations are unknown for many diseases. Zika virus (ZIKV) is a mosquito-borne virus that poses a fatal threat and has spread explosively throughout the world, impacting human health. From a geographical perspective, this study aims to understand the global hotspots of ZIKV as well as the spatially heterogeneous relationship between ZIKV and environmental factors using exploratory special data analysis (ESDA) model. A geographically weighted regression (GWR) model was used to analyze the influence of the dominant environmental factors on the spread of ZIKV at the continental scale. The results indicated that ZIKV transmission had obvious regional and seasonal heterogeneity. Population density, GDP per capita, and landscape fragmentation were the dominant environmental factors affecting the spread of ZIKV, which indicates that social factors had a greater influence than natural factors on the spread of it. As SARS-CoV-2 is spreading globally, this study can provide methodological reference for fighting against the pandemic.


Subject(s)
Zika Virus Infection , Animals , Humans , Mosquito Vectors , Spatio-Temporal Analysis , Zika Virus , Zika Virus Infection/epidemiology , Zika Virus Infection/transmission
6.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166198, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1263225

ABSTRACT

Some maternal infections, contracted before or during pregnancy, can be transmitted to the fetus, during gestation (congenital infection), during labor and childbirth (perinatal infection) and through breastfeeding (postnatal infection). The agents responsible for these infections can be viruses, bacteria, protozoa, fungi. Among the viruses most frequently responsible for congenital infections are Cytomegalovirus (CMV), Herpes simplex 1-2, Herpes virus 6, Varicella zoster. Moreover Hepatitis B and C virus, HIV, Parvovirus B19 and non-polio Enteroviruses when contracted during pregnancy may involve the fetus or newborn at birth. Recently, new viruses have emerged, SARS-Cov-2 and Zika virus, of which we do not yet fully know the characteristics and pathogenic power when contracted during pregnancy. Viral infections in pregnancy can damage the fetus (spontaneous abortion, fetal death, intrauterine growth retardation) or the newborn (congenital anomalies, organ diseases with sequelae of different severity). Some risk factors specifically influence the incidence of transmission to the fetus: the timing of the infection in pregnancy, the order of the infection, primary or reinfection or chronic, the duration of membrane rupture, type of delivery, socio-economic conditions and breastfeeding. Frequently infected neonates, symptomatic at birth, have worse outcomes than asymptomatic. Many asymptomatic babies develop long term neurosensory outcomes. The way in which the virus interacts with the maternal immune system, the maternal-fetal interface and the placenta explain these results and also the differences that are observed from time to time in the fetal­neonatal outcomes of maternal infections. The maternal immune system undergoes functional adaptation during pregnancy, once thought as physiological immunosuppression. This adaptation, crucial for generating a balance between maternal immunity and fetus, is necessary to promote and support the pregnancy itself and the growth of the fetus. When this adaptation is upset by the viral infection, the balance is broken, and the infection can spread and lead to the adverse outcomes previously described. In this review we will describe the main viral harmful infections in pregnancy and the potential mechanisms of the damages on the fetus and newborn.


Subject(s)
Congenital Abnormalities/etiology , Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious , Virus Diseases/complications , Animals , COVID-19/complications , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/transmission , Congenital Abnormalities/diagnosis , Congenital Abnormalities/prevention & control , Cytomegalovirus/isolation & purification , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/prevention & control , Cytomegalovirus Infections/transmission , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/prevention & control , Pregnancy Outcome , SARS-CoV-2/isolation & purification , Virus Diseases/diagnosis , Virus Diseases/prevention & control , Virus Diseases/transmission , Zika Virus/isolation & purification , Zika Virus Infection/complications , Zika Virus Infection/diagnosis , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission
7.
Emerg Med Clin North Am ; 39(3): 453-465, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1263258

ABSTRACT

The role of the emergency provider lies at the forefront of recognition and treatment of novel and re-emerging infectious diseases in children. Familiarity with disease presentations that might be considered rare, such as vaccine-preventable and non-endemic illnesses, is essential in identifying and controlling outbreaks. As we have seen thus far in the novel coronavirus pandemic, susceptibility, severity, transmission, and disease presentation can all have unique patterns in children. Emergency providers also have the potential to play a public health role by using lessons learned from the phenomena of vaccine hesitancy and refusal.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Pediatrics , COVID-19/diagnosis , COVID-19/therapy , COVID-19/transmission , Chickenpox/diagnosis , Chickenpox/therapy , Chickenpox/transmission , Chikungunya Fever/diagnosis , Chikungunya Fever/therapy , Chikungunya Fever/transmission , Child , Communicable Diseases, Emerging/immunology , Decision Trees , Dengue/diagnosis , Dengue/therapy , Dengue/transmission , Emergency Medicine , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/therapy , Hemorrhagic Fever, Ebola/transmission , Humans , Incidence , Malaria/diagnosis , Malaria/therapy , Malaria/transmission , Measles/diagnosis , Measles/therapy , Measles/transmission , Physician's Role , Public Health , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Travel-Related Illness , Vaccination , Vaccination Refusal , Whooping Cough/diagnosis , Whooping Cough/therapy , Whooping Cough/transmission , Zika Virus Infection/diagnosis , Zika Virus Infection/therapy , Zika Virus Infection/transmission
10.
J Immunol ; 205(11): 3083-3094, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-902734

ABSTRACT

Vertical transmission of the Zika virus (ZIKV) causes severe fetal defects, but the exact pathogenic mechanism is unclear. We identified up to a 10,480-fold higher expression of viral attachment factors AXL, GAS6, and PROS1 and a 3880-fold increase in ZIKV infectiousness/propagation in human term decidual stromal cells versus trophoblasts. Moreover, levels of viral attachment factors and ZIKV are significantly increased, whereas expression of innate immune response genes are significantly decreased, in human first trimester versus term decidual cells. ZIKV-infected decidual cell supernatants increased cytotrophoblasts infection up to 252-fold compared with directly infected cytotrophoblasts. Tizoxanide treatment efficiently inhibited Zika infection in both maternal and fetal cells. We conclude that ZIKV permissiveness, as well as innate immune responsiveness of human decidual cells, are gestational age dependent, and decidual cells augment ZIKV infection of primary human cytotrophoblast cultures, which are otherwise ZIKV resistant. Human decidual cells may act as reservoirs for trimester-dependent placental transmission of ZIKV, accounting for the higher Zika infection susceptibility and more severe fetal sequelae observed in early versus late pregnancy. Moreover, tizoxanide is a promising agent in preventing perinatal Zika transmission as well as other RNA viruses such as coronavirus.


Subject(s)
Decidua , Gestational Age , Immunity, Innate , Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus/immunology , Animals , Chlorocebus aethiops , Decidua/immunology , Decidua/pathology , Decidua/virology , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/pathology , Trophoblasts , Vero Cells , Zika Virus Infection/immunology , Zika Virus Infection/pathology , Zika Virus Infection/transmission
11.
Cell Rep ; 33(5): 108339, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-898565

ABSTRACT

Here, we report our studies of immune-mediated regulation of Zika virus (ZIKV), herpes simplex virus 1 (HSV-1), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the human cornea. We find that ZIKV can be transmitted via corneal transplantation in mice. However, in human corneal explants, we report that ZIKV does not replicate efficiently and that SARS-CoV-2 does not replicate at all. Additionally, we demonstrate that type III interferon (IFN-λ) and its receptor (IFNλR1) are expressed in the corneal epithelium. Treatment of human corneal explants with IFN-λ, and treatment of mice with IFN-λ eye drops, upregulates antiviral interferon-stimulated genes. In human corneal explants, blockade of IFNλR1 enhances replication of ZIKV and HSV-1 but not SARS-CoV-2. In addition to an antiviral role for IFNλR1 in the cornea, our results suggest that the human cornea does not support SARS-CoV-2 infection despite expression of ACE2, a SARS-CoV-2 receptor, in the human corneal epithelium.


Subject(s)
Betacoronavirus/physiology , Cornea/virology , Coronavirus Infections/transmission , Herpesvirus 1, Human/physiology , Interferons/immunology , Pneumonia, Viral/transmission , Zika Virus/physiology , Animals , Betacoronavirus/immunology , COVID-19 , Cornea/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Herpes Simplex/immunology , Herpes Simplex/transmission , Herpes Simplex/virology , Humans , Mice , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Virus Replication/physiology , Zika Virus Infection/immunology , Zika Virus Infection/transmission , Zika Virus Infection/virology , Interferon Lambda
12.
J Neuropathol Exp Neurol ; 79(8): 823-842, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-639090

ABSTRACT

Biological evolution of the microbiome continually drives the emergence of human viral pathogens, a subset of which attack the nervous system. The sheer number of pathogens that have appeared, along with their abundance in the environment, demand our attention. For the most part, our innate and adaptive immune systems have successfully protected us from infection; however, in the past 5 decades, through pathogen mutation and ecosystem disruption, a dozen viruses emerged to cause significant neurologic disease. Most of these pathogens have come from sylvatic reservoirs having made the energetically difficult, and fortuitously rare, jump into humans. But the human microbiome is also replete with agents already adapted to the host that need only minor mutations to create neurotropic/toxic agents. While each host/virus symbiosis is unique, this review examines virologic and immunologic principles that govern the pathogenesis of different viral CNS infections that were described in the past 50 years (Influenza, West Nile Virus, Zika, Rift Valley Fever Virus, Hendra/Nipah, Enterovirus-A71/-D68, Human parechovirus, HIV, and SARS-CoV). Knowledge of these pathogens provides us the opportunity to respond and mitigate infection while at the same time prepare for inevitable arrival of unknown agents.


Subject(s)
Central Nervous System Viral Diseases/epidemiology , Central Nervous System Viral Diseases/transmission , Zoonoses/epidemiology , Zoonoses/transmission , Animals , Birds , Central Nervous System Viral Diseases/prevention & control , Ecosystem , Humans , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Influenza in Birds/transmission , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/transmission , West Nile Fever/epidemiology , West Nile Fever/prevention & control , West Nile Fever/transmission , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission , Zoonoses/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL